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SUMMARY

In this paper, the mesh-free least square-based finite difference (MLSFD) method is applied to numerically
study the flow field around two circular cylinders arranged in side-by-side and tandem configurations. For
each configuration, various geometrical arrangements are considered, in order to reveal the different flow
regimes characterized by the gap between the two cylinders. In this work, the flow simulations are carried
out in the low Reynolds number range, that is, Re= 100 and 200. Instantaneous vorticity contours and
streamlines around the two cylinders are used as the visualization aids. Some flow parameters such as
Strouhal number, drag and lift coefficients calculated from the solution are provided and quantitatively
compared with those provided by other researchers. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The studies of flow around one or arrays of circular cylinders are of practical importance in engi-
neering. In many areas of engineering, circular cylinders form the basic component of structures,
for example, heat exchange tubes, cooling systems for nuclear power plants, offshore structures,
cooling towers, chimney stacks and transmission cables, etc. The engineering structures mentioned
above are exposed to either air or water flow, and therefore they experience flow-induced vibration,
which could lead to the structure failure under severe conditions. To avoid the situations men-
tioned above and improve the structure design, it is necessary for engineers to understand the details
of the fluid–structure interaction, and possess the ability to predict the force and response of the
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cylinder-like structures. Fortunately, the knowledge concerned can be enriched by the experimental
and numerical simulations.

In the past decades the incompressible flow past one cylinder has been well studied. Now it is
already considered as a classical case for validating new numerical scheme. It is known that the
flow field around one cylinder demonstrates a broad class of patterns. Depending on the value of
Reynolds numbers, it can be developed into either steady or unsteady one. From the viewpoint
of geometrical configuration, flow around two cylinders can be considered as an extension of one
isolated cylinder. However, the corresponding problem is much more complicated. That is because
the dynamic interaction between the shed vortices, shear layers and Krmn vortex sheets appears
in the wake of the cylinders. Consequently, the wake behaves quite differently from that of one
isolated circular cylinder. Due to the abundance of interesting flow features, flow past a pair of
circular cylinders has attracted many research attentions.

The geometrical configurations of two circular cylinders, in general, can be categorized into
side-by-side, tandem, and staggered arrangements with respect to the direction of the free stream
flow. These configurations have been studied experimentally and numerically by some researchers
in the past. Among the experimental studies, Bearman and Wadcock [1] used flow-visualization
methods to investigate the evolution of flow interference behind two side-by-side circular cylin-
ders, and provided some physical analysis and explanations of their experimental results. The wake
evolution behind two side-by-side cylinders was also experimentally studied by Williamson [2].
His studies focused on the flows in the low Reynolds number range (50–200). He observed that
for a certain range of the gap, the wake behind the side-by-side cylinders showed synchronized
behaviour, i.e. anti-phase or in-phase. The early experimental studies of flow around two circu-
lar cylinders were reviewed by Zdravkovich [3], especially in the high Reynolds number range
(103–105). He classified a variety of the flow regimes by the geometrical arrangements of cylin-
ders. With the advent and rapid development of computer technology, the flow around two circular
cylinders is also investigated numerically [4–8]. Stansby and Slaouti [4] studied the flow around
two circular cylinders in side-by-side arrangement within the high Reynolds number range using
an inviscid discrete-vortex method. His numerical results grossly reproduce the flow features found
in experiments. The flows around two side-by-side circular cylinders at Re= 100 were studied
by Chang and Song [6] using a mixed finite element/finite difference method. Their computa-
tion confirmed the existence of symmetric and asymmetric wake patterns observed in previous
experiments. Slaouti and Stansby [5] used a random vortex method to model two-dimensional
laminar flows around two circular cylinders at Re= 200 in tandem and side-by-side arrangements.
They showed that laminar flow computation can be of some help on the prediction of large-scale
structures of flow at high Reynolds numbers. Mittal et al. [7] employed a stabilized finite element
scheme to study the flow around two circular cylinders at Reynolds numbers of Re= 100 and
1000 in tandem and staggered arrangements. Their study mainly focused on the variation of force
coefficients of the two cylinders, and found that the downstream cylinder experiences large un-
steady force as compared with one isolated cylinder. More recently, Meneghini and Saltara [8] used
finite element method to investigate the flow interference between two cylinders in tandem and
side-by-side arrangements at Reynolds number of Re= 200. They provided the vorticity contours
and the evolution history of lift and drag coefficients, and observed that in the tandem arrangement,
the mean value of drag coefficient of the downstream cylinder changes from negative to positive
when the gap between two cylinder centres is greater than three times of the cylinder diameter.

In the previous numerical studies of flow around two circular cylinders, most of the simulations
employed mesh-based methods, such as finite difference, finite element, or random vortex. Although
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the discrete vortex method used by Stansby [4] does not require a mesh, however, its computation
is based on a potential flow assumption. In other words, this method is only suitable for the
flow simulation in the very high Reynolds number range. In general, mesh-based methods need
to employ grid-generation techniques such as multi-block, coordinate transformation or patched
coordinates, and build up data structure to store detailed elemental information comprising all
node-based or element-based connectivity. As a consequence, the accuracy of numerical solution
depends strongly on the mesh properties. On the other hand, the construction of body-fitting meshes
and transformation of governing equations are usually tedious and problem dependent. To eliminate
the mesh-related drawbacks, the so-called meshless or mesh-free methods have been developed in
recent years, and serve as alternative numerical approaches for computational mechanics. The term
meshless or mesh-free refers to the ability of the method to construct functional approximation or
interpolation entirely from the information at a set of knots, without any pre-specified connectivity
or relationships among the knots. The mesh-free least square-based finite difference (MLSFD)
method proposed by Ding et al. [9] is among the group of mesh-free methods. The implementation
of MLSFD method greatly reduces the human labour and computer time on the grid generation.
Before the mesh-free method is efficiently applied in industry for complex problems, its robustness
and effectiveness must be examined at first. The present study is such an attempt to address
the issues on the flow around two cylinders by solving Navier–Stokes equations with MLSFD
algorithm.

In this paper, we provide our numerical solutions for the flows past two cylinders in the side-
by-side and tandem arrangements at Reynolds numbers of 100 and 200. For each arrangement,
cylinders are placed apart with various gaps between two cylinder centres. It is already known
that the wake interference behind two cylinders is highly influenced by the gap between the
cylinders, and there exists a so-called critical gap, which is used to classify the flow patterns
behind the cylinder into several categories. Based on the experimental observation, a range of flow
regimes characterized by a critical gap has been found by Williamson [2] and by Zdravkovich [3].
Williamson found three flow patterns characterized for the side-by-side arrangement, i.e. T<2.2D,
2.2D<T<5D, T>5D, where T represents the transverse gap between the two cylinders and D the
diameter of the circular cylinder. Zdravkovich [3] reported that three flow regimes can be observed
for the cylinders placed in tandem: L<1.2−1.8D, 1.2−1.8D<L<3.4−3.8D and L>4D, where
L represents the longitudinal gap between the two cylinders. As suggested by Zdravkovich [3],
the value of the critical gap depends on the Reynolds number and may vary within a certain range.
In the present study, numerical simulations are performed for the cases with the transverse gaps
of 1.5D, 3D, and 4D in the side-by-side arrangement and the longitudinal gaps of 2.5D and
5.5D in the tandem arrangement, respectively. Our objective is to confirm the earlier experimental
findings on interactive vortex shedding and provide quantitative analysis of the flow field around
two cylinders in the low Reynolds number range. In order to get better understanding of the wake
interference around the two cylinders, the flow past one single cylinder is also simulated and the
solution is taken as a reference to flow past two cylinders. In this work, the two-dimensional
incompressible Navier–Stokes equations in the vorticity-stream function form are taken as the
governing equations. The single-value pressure condition is implemented to determine the value
of the stream function on the two cylinder walls. To describe the flow pattern quantitatively, mean
values of lift and drag coefficients (CD and CL) and Strouhal (St) number are computed and
compared with available data in the literature. To illustrate the detailed fluid structures near the
wake region behind the two circular cylinders, numerical visualization are presented in the form
of vorticity contours and streamlines.
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2. METHODOLOGY

In this section, a brief description of MLSFD method is provided firstly. Then, the governing
equations and boundary conditions related with flow around two circular cylinders are presented.
Finally, an efficient node generation is discussed.

2.1. MLSFD method and its derivative approximation

The MLSFD method employed in this study was inspired from the development of traditional finite
difference method. Essentially, both methods were originated from the Taylor series expansion.
MLSFD uses multi-dimensional Taylor series expansion to construct the approximation of the
derivatives of unknown functions while FD employs the one-dimensional Taylor series expansion.
For example, the functional value of a generic function � at the supporting knot (as shown in
Figure 1) can be approximated by the functional value and its derivatives at the reference knot by
using the two-dimensional Taylor series expansion,
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where the subscript 0 indicates the corresponding values at the reference knot, and subscript i
indicates the corresponding values at the i th supporting point. The relative position of the reference
node and the i th supporting point is defined by �xi (≡ xi − x0) and �yi (≡ yi − y0), where (xi , yi )
and (x0, y0) denote the Cartesian coordinates of the i th supporting point and the reference node,
respectively.

If Equation (1) is truncated to the third-order derivatives, it will have 9 unknown derivatives.
Among them, two are the first-order derivatives, three are the second-order derivatives, and four

Reference knot

Supporting knots

Non-supporting knots

Figure 1. Supporting knots around a reference knot.
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are the third-order derivatives. To solve for the 9 unknowns, Equation (1) has to be applied at 9
neighbouring knots. As a result, the following matrix form is obtained:

Du=S · du (2)

where

DuT = [�1 − �0, �2 − �0, . . . , �9 − �0]
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and

�xi = xi−x0, �yi = yi−y0, i = 1, 2, . . . , 9

Therefore, the derivative vector duT can be uniquely determined if the coefficient matrix S is
not singular. However, for a set of randomly distributed nodes, the matrix S in Equation (2) does
suffer the possible singularity. In the MLSFD method, the least-square technique is introduced to
overcome this problem. The least-squares technique allows an optimized approximation derived
from an over-determined set of equations, and the resultant matrix has good properties such as
positive, symmetric, and definite. Thus, the problem of singular coefficient matrix is circumvented
by means of using more supporting knots (more than the unknowns). More detailed descriptions
about MLSFD method can be found in Reference [9].

The explicit expression for the optimal derivative approximation by the least-square technique
can be written as

du= (STS)−1STDu (3)

Here, the row number of matrix S is usually larger than its column number. If they are of the same
value and matrix S is invertible, the derivative vector derived from Equation (3) has the equivalent
entries achieved by Equation (2). It should be noted that the use of least-square technique does not
degrade the order of accuracy of finite-difference approximation [9]. Once the coefficient matrix
is formed, it can be used to discretize the spatial derivatives in partial differential equations.

2.2. Governing equations

In the present study of flow around two circular cylinders, the flow is assumed to be viscous,
laminar and incompressible. The governing equations are the two-dimensional, time-dependent
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Navier–Stokes equations and continuity equation written in the vorticity and stream function form.
The non-dimensional governing equations can be expressed as
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where � denotes the stream function, � represents the vorticity, and u, v denote the components
of velocity in the x and y direction, which can be calculated from the stream function

u = ��

�y
, v = − ��

�x
(6)

An explicit scheme is developed to solve the above stream function-vorticity formulation. In the
scheme, MLSFD method is responsible for the discretization of spatial derivatives and temporal
discretization is based on an explicit Runge–Kutta method.With proper implementation of boundary
conditions, the resultant algebraic equations are then solved in a time-marching manner.

2.3. Boundary and initial conditions

The geometry of flow domain and boundary conditions are depicted in Figure 2. The configuration
of the two cylinders with equal diameter D, is defined by two parameters: the longitudinal gap
L and transverse gap T . It is assumed that the two cylinders are immersed in steady free stream
flow of velocity U , which is equivalent to impose the boundary condition for stream function with
� =U · y and vorticity with �= 0. The top and bottom boundaries are located at a transversal
distance of 12 times of the cylinder diameter, which is expected far enough to be the far-field. The
out-flow boundary is extended to a distance of 25 times of the cylinder diameter downstream from
the rear of the cylinder. The corresponding boundary condition is imposed in such a manner that

∞U

L

T

Figure 2. Geometrical description of flow past a pair of cylinders.
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it does not influence the vortices formed in the near wake of the cylinder. More precisely, we set

��

�x
= 0 (7)

At the surface of the cylinder, the non-slip boundary condition applies, i.e. the velocity of the fluid
is equal to the cylinder velocity, zero. Therefore, the stream function must satisfy two boundary
conditions

� = constant,
��

�n
= 0 (8)

There is no explicit boundary condition available for vorticity � at the surface of cylinder, and it
can be directly computed from the stream function.

2.3.1. Pressure single-value condition. In a multiply-connected domain, the value of the stream
function at the surface of stationary body is a constant but unknown, which is determined and
updated dynamically during the computation. To determine the value of the stream function on
the wall, Tezduyar et al. [10] suggested using the single-value condition of the pressure for the
multiply-connected domain. This condition is derived from the fact that the pressure is a scalar
and can be formulated as ∮

l
∇p dl = 0 (9)

where l can be any line that makes an enclosure. In the present work, l is taken as the cylinder
boundary along anti-clockwise direction. Therefore, Equation (9) can be simplified as

r
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The expression of �p/�� on the cylinder wall can be derived from the momentum equation under
the cylindrical coordinates, which is written as
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Substituting Equation (11) into Equation (10) gives∫ 2�
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)
d�= 0 (12)

The derivatives in Equation (12) can be discretized by the one-side finite difference schemes and
expressed in terms of the stream function at the cylinder wall and interior knots. Substituting the
derivative approximation forms into Equation (12), we can obtain the formulation of �|cylinder.
Then, the value of the stream function on the cylinder wall can be updated by the stream function
values at the interior knots.

2.3.2. Initial condition. In this study, all the simulations are carried out in a time-marching man-
ner. An unsymmetrical initial flow field, which serves as an artificial initiator for the numerical
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(a)

(b)

(c)

Figure 3. Three typical node distributions used in the present study: (a) one isolated cylinder;
(b) side-by-side arrangement of T = 3D; and (c) tandem arrangement of L = 2.5D.
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simulation, is provided by

�=
√

(x − xc)2 + (y − yc)2 (13)

where xc and yc are the position of the centre of closest cylinder in the x and y coordinates,
respectively. The initial values of vorticity in the domain are all set to zero. If the Reynolds
numbers are less than some critical value, the introduced perturbation will be gradually dissipated
by viscosity. If the Reynolds numbers are greater than the critical value, the introduced perturbation
will trigger the vortex shedding process. For the cases of flow past two cylinders, the critical value
of Reynolds numbers depends on the arrangements and the gaps of two cylinders.

2.4. Node generation

In principle, the concept of MLSFD discretization works well for any ‘mesh’ system, in which the
nodes can be either regularly or irregularly distributed. This mesh-free property not only makes
MLSFD method possess geometry flexibility, but also eases the procedure of node generation,
especially for the cases in which geometrical complexity arise from the combination of multiple
objects. For example, in the present study, though the computational domain is multiply-connected,
the geometrical configuration is formed by several boundaries of simple shapes, i.e. circular
cylinders and rectangular outer boundary. For each circular cylinder, the nodes in its neighbourhood
can be generated by the use of the local cylindrical coordinate system. The only difference between
the present node-generation technique and the one used for a single cylinder is that, in the middle
of two cylinders, there is an invisible line, which forms the border of the two systems. The node-
generation technique mentioned above is similar to the algorithm used in the overlapped mesh
or the multi-block mesh generation. However, it removes their drawbacks such as information
exchange between different meshes and mesh alignment near the region between different blocks.
From the procedure of node generation described above, it is obvious that the mesh-free property
of MLSFD method saves a lot of time and human labour in the ‘grid’ generation in the present
two-cylinder cases as compared with traditional mesh-based methods. Following the procedures
described above, three typical ‘meshes’ are generated for one isolated cylinder, two side-by-side
cylinders and two tandem cylinders, respectively, which are shown in Figure 3. After the node
generation, the local support of interior nodes must be determined before we do the mesh-free
discretization. The neighbouring knots are found according to their distance to the reference node.
For each reference node, we have to compute its distances to the surrounding knots first, and
then list a sequence of neighbouring knots starting from the smallest one. When the number of
neighbouring knots is given, it is easy to identify the neighbouring knots from the list. Some
description about the selection of neighbouring knots was described in Reference [11].

3. RESULTS AND DISCUSSION

In this study, the MLSFD method is applied to simulate flows around two circular cylinders within
the low Reynolds number range, i.e. Re= 100 and 200. Unless otherwise mentioned, the MLSFD
scheme implemented for the spatial discretization is the second-order accurate for the second-order
derivative approximation and the third-order accurate for the first-order derivative approximation.
For each node inside the domain, 16 supporting points are employed to do the spatial discretization.
To confirm the experimental observations, it is necessary to visualize the computational solution
and provide the details of the flow near the wake region. Therefore, streamlines and vorticity
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Re=100

Re=200

Figure 4. Instantaneous vorticity contours and streamlines of flow past one circular cylinder.
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Figure 5. Drag and lift coefficients of flow past one cylinder.

Table I. Flow parameters for flow field around one circular cylinder at Re= 100 and 200.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Reynolds number Re= 100 Re= 200 Re= 100 Re= 200 Re= 100 Re= 200

Belov et al. [12] — 1.19± 0.042 — ± 0.64 — 0.193
Braza et al. [13] 1.364± 0.015 1.40± 0.05 ± 0.25 ± 0.75 0.160 0.200
Liu et al. [14] 1.350± 0.012 1.31± 0.049 ± 0.339 ± 0.69 0.164 0.192
Present 1.356±0.010 1.348± 0.050 ± 0.287 ± 0.659 0.166 0.196

contours are plotted as the flow-visualization tools. Some flow parameters, which characterize
the flow aspects such as lift and drag coefficients and Strouhal number, are also computed and
quantitatively compared with the results of other researchers.
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(a)

(b)

Figure 6. Instantaneous vorticity contours and streamlines for flow past a pair of side-by-side cylinders
(T = 1.5D) at Re= 200: (a) non-dimensional time= 195; and (b) non-dimensional time= 201.
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Figure 7. Time histories of drag (CD) and lift (CL) coefficients of flow past a pair of side-by-side
cylinders (T = 1.5D) at Re= 100.
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Figure 8. Time histories of drag (CD) and lift (CL) coefficients of flow past a pair of
side-by-side cylinders (T = 1.5D) at Re= 200.

3.1. Definition of flow parameters

3.1.1. Lift and drag coefficients. In the viscous flow, the temporal histories of lift and drag forces
are determined from the pressure distribution and friction at the surface of the blunt body. For the
cases of flow around circular cylinders, the drag and lift can be obtained from

FL = r
∫ (

�r
��

�n
− ��

)
cos � d�

FD = r
∫ (

�r
��

�n
− ��

)
sin � d�

(14)

where r is the radius of the circular cylinder.
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Figure 9. Instantaneous vorticity contours and streamlines for flow past a pair of side-by-side
cylinders (T = 3D) at Re= 100 in a circle.
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Figure 10. Drag and lift coefficients of flow past a pair of side-by-side cylinder (T = 3D) at Re= 100.

The non-dimensional drag and lift coefficients of the body are then given by

CL = 2FL
�U 2∞D

, CD = 2FD
�U 2∞D

(15)

3.1.2. Strouhal number. The Strouhal number (St) is used as a measure of the oscillating fluid
flow phenomenon in the wake region. It is defined by the following relation:

St = fs · D/U∞ (16)

where fs is the shedding frequency and computed from the periodic evolution of the lift co-
efficient, D is cylinder diameter and U∞ is the velocity of free stream. Since D and U∞ are
non-dimensionalized as unity, St is therefore equivalent to the shedding frequency.

3.2. Flow past an isolated circular cylinder

Flow past an isolated circular cylinder is a well-studied benchmark problem. One of its most
attractive features is the vortex shedding behind the cylinder and the periodic variation of the
flow field at moderate Reynolds number. To analyse and better understand the vortex shedding
behaviour and the interference of vortex streets behind the two circular cylinders, the solution of
flow past one cylinder can serve as a reference for comparison. Moreover, the study of flow past
one cylinder can also be used to validate the present mesh-free scheme. In this study, the unsteady
flow at Re= 100 and 200 are simulated on a ‘mesh’ with 23 033 nodes. The node distribution
can be seen in Figure 3(a). As discussed in the previous section, the set of nodes are generated
from a truncated polar mesh. The dimensionless time step is set to 0.005. At every time level, the
convergence criterion of stream function-vorticity formulation is set in a manner that the residual
is less than 10−6. To obtain the characteristics of evolution of lift and drag coefficients, a long
time of computation is necessary. In most of the cases, the computation runs for about 200 of
dimensionless time, so does for the flow past two cylinders.

Figure 4 illustrates the typical vorticity contours and streamlines for Re= 100 and 200 at an
instantaneous time. Figure 5 shows the time-dependent behaviour of the drag and lift coefficients
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Figure 11. Instantaneous vorticity contours and streamlines for flow past two side-by-side
cylinders (T = 3D) at Re= 200 in a circle.
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Figure 12. Drag and lift coefficients of flow past a pair of side-by-side cylinder (T = 4D) at Re= 100.
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Figure 13. Drag and lift coefficients of flow past a pair of side-by-side cylinder (T = 3D) at Re= 200.

on the surface of cylinder for Re= 100 and 200. They both demonstrate clear periodicity, which
implies the periodic vortex shedding from the rear surface of the cylinder. Table I lists the Strouhal
number, mean value and amplitude of lift and drag coefficients of present results, as well as
other published data from numerical investigations [12–14]. From Table I, it can be observed that
our results agree very well with those achieved by other researchers. The mean values of drag
coefficient of our solution differ from those of Liu et al. [14] by only about 0.4% at Re= 100,
and 2.8% at Re= 200. The Strouhal number of present solution is 0.166 at Re= 100 and 0.196
at Re= 200. They are slightly greater than the results of Liu et al. [14], specifically about 1.2%
at Re= 100 and 2.0% at Re= 200. The agreement on the flow parameters not only means that
we obtain the reference results for the future analysis, but also indicates that the MLSFD method
can be employed for the further study of flow around two circular cylinders.
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Figure 14. Instantaneous vorticity contours and streamlines for flow past a pair of side-by-side
cylinders (T = 4D) at Re= 200 in a circle.
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Figure 15. Drag and lift coefficients of flow past a pair of side-by-side cylinders (T = 4D) at Re= 200.
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Figure 16. Time histories of in-phase and anti-phase lift coefficients for a pair
of side-by-side cylinders (T = 3D).

3.3. Flow past two circular cylinders

As compared with the flow field behind one isolated circular cylinder, the flow fields behind
two circular cylinders are much more complicated, especially for the case where the intense flow
dynamic activity is noticed in the gap region between the cylinders. In this study, we mainly
focused on the flow fields behind two cylinders arranged in side-by-side and tandem.

3.3.1. Side-by-side arrangement. In the side-by-side arrangement of two circular cylinders,
numerical simulations have been performed for the cases of T = 1.5D, 3D, and 4D,
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Table II. Flow parameters for flow field around two circular cylinder at Re= 100 and 200.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Reynolds number Re= 100 Re= 200 Re= 100 Re= 200 Re= 100 Re= 200

One isolated cylinder 1.356±0.010 1.348±0.050 0.00±0.287 0.00±0.659 0.166 0.196

T = 1.5D Upper 1.53 1.54 −0.46 −0.41 — —
cylinder
Lower 1.51 1.52 0.47 0.43 — —
cylinder

T = 3D Upper 1.560±0.038 1.548±0.083 −0.131±0.253 −0.104±0.866 0.182 0.215
cylinder
Lower 1.560±0.038 1.548±0.083 0.131±0.253 0.104±0.866 0.182 0.215
cylinder

T = 4D Upper 1.514±0.013 1.481±0.0461 −0.077±0.348 −0.058±0.762 0.184 0.211
cylinder
Lower 1.514±0.013 1.481±0.0461 0.077±0.348 0.058±0.762 0.184 0.211
cylinder

Table III. Comparison of flow parameters for side-by-side cylinders at Re= 200.

Mean value of drag Mean value of lift
Parameters coefficient (CD) coefficient (CL) Strouhal number (St)

Results Present Meneghini [8] Present Meneghini [8] Present Meneghini [8]
T = 1.5D Upper cylinder 1.54 1.32 −0.41 −0.40 — —

Lower cylinder 1.52 1.32 0.43 0.40 — —

T = 3D Upper cylinder 1.548 1.41 −0.104 −0.10 0.215 0.2
Lower cylinder 1.548 1.41 0.104 0.10 0.215 0.2

T = 4D Upper cylinder 1.481 1.34 −0.058 −0.05 0.211 0.2
Lower cylinder 1.481 1.34 0.058 0.05 0.211 0.2

Table IV. Comparison of flow parameters for side-by-side cylinders at Re= 100.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Results Chang and Chang and Chang and
Present Song [6] Present Song [6] Present Song [6]

T = 3D Upper cylinder 1.560 ± 0.038 1.533 ± 0.04 −0.131 ± 0.253 −0.108 ± 0.31 0.182 0.18
Lower cylinder 1.560 ± 0.038 1.533 ± 0.04 0.131 ± 0.253 0.108 ± 0.31 0.182 0.18
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Figure 17. Instantaneous vorticity contours and streamlines for flow past a pair of
tandem cylinders (L = 2.5D) at Re= 100.
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Figure 18. Time histories of lift (CL) coefficients of flow past a pair of
tandem cylinders (L = 2.5D) at Re= 100.

respectively. The node distributions are generated in the way as discussed in the previous section.
A typical node distribution is depicted in Figure 3(b). The time step is set to the same value as in
the one-cylinder case.
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0/4T

Figure 19. Instantaneous vorticity contours and streamlines for flow past a pair of tandem
cylinders (L = 2.5D) at Re= 200 in a circle.

Figure 6 presents instantaneous vorticity contours and streamlines for the flow field of T = 1.5D
and Re= 200. The transverse gap of 1.5D is within the range of intermediate critical gap
(1.1D<T<2.2D) observed by Zdravkovich [3]. One of the characteristic features observed for this
flow regime is the occurrence of biased flow pattern. Bearmann andWadcock [1] andWilliamson [2]
observed in experiments that the biased flow pattern is bistable, i.e. the narrow and wide wakes,
and the direction of the gap flow, switch from one cylinder to the other. This phenomenon is
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Figure 20. Drag and lift coefficients of flow past a pair of tandem cylinders (L = 2.5D) at Re= 200.

successfully reproduced as observed from the streamlines in Figure 6. Due to the similarity
of flow pattern, the flow visualization is only provided for the flow at Re= 200. In Figures 7
and 8, the temporal histories of drag and lift coefficients are presented. From these figures, it can
be observed that drag and lift coefficients exhibit irregular variation with time. It implies that the
irregular vortex shedding occurs behind the pair of cylinders.

When the transverse gap is larger than 2D, the occurrence of two synchronized Karman vortex
streets are observed in the experiments for the side-by-side configuration [3]. Our numerical
solutions for the flows of the transverse gap T = 3D and 4D clearly reproduce this phenomenon
as we observe the Figures 9, 11 and 14 in which the plots of instantaneous vorticity contours
and streamlines are presented. The time evolutions of drag and lift coefficients are shown in
Figures 10, 12, 13 and 15. As shown in these figures, the drag and lift coefficients synchronize
variation with time, which also confirm the synchronized behaviour of vortex shedding from the
upper and lower cylinders.

In the previous observation in experiments [1], two types of synchronized Karman vortex streets
have been reported: symmetric (anti-phase) and anti-symmetric (in-phase). Both phenomena are
also observed in our numerical experiments. In most cases, the flow behind two cylinders usually
maintains anti-phase type of vortex streets. The only exception is the case of the transverse gap
T = 3D at Re= 100. In Figure 9, the instantaneous streamlines and vorticity contours within
one cycle are provided. On the same ‘mesh’ and with the same initial condition, the flow of the
transverse gap T = 3D at Re= 200 finally reaches an anti-phase type of vortex shedding instead.
The time histories of lift coefficients for the in-phase and anti-phase vortex shedding are shown
in Figure 16. From the present numerical experiments, it is difficult to predict which type of
flow pattern will occur or determine which type is more stable. Similar phenomenon has also been
reported by Chang and Song [6]. However, from the comparison of time histories of lift coefficients
shown in Figure 16, we can say that in-phase type of flow takes a much longer time to evolve into
the final flow regime from the initial status as compared with its anti-phase counterpart.

Table II lists the Strouhal number, mean value and amplitude of lift and drag coefficients of
present results at Re= 100 and 200. It can be observed that the mean value of lift coefficient is
positive for the upper cylinder and negative for the lower cylinder. The reason may lie on the
gap between the two cylinders, which prevents the flow going through. Therefore, a high-pressure
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Figure 21. Instantaneous vorticity contours and streamlines for flow past a pair of tandem
cylinders (L = 5.5D) at Re= 100 in a circle.

field is formed in the area between two cylinders. From Table II, it can also be observed that the
flow parameters get closer to the solution of flow past one isolated cylinder as gap increasing.
It indicates that less flow interference will be expected as the two cylinders are further apart.
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Figure 22. Drag and lift coefficients of flow past a pair of tandem cylinders (P = 5.5D) at Re= 100.

Table III presents our solutions and those of Meneghini and Saltara [8] at Re= 200. Table IV
gives the comparison between our results and those of Chang and Song [6] at Re= 100. From the
comparison, it can be seen that our calculated Strouhal numbers and lift coefficients are in good
agreement with previously published data.

3.3.2. Tandem arrangement. In this section, numerical results pertaining to the flow past two
cylinders in tandem are presented. In the present investigation, the longitudinal gaps between the
two cylinders are L = 2.5D and 5.5D, respectively. A typical node distribution is depicted in
Figure 3(c), which is for the case of L = 2.5D. Like the side-by-side arrangement, the time step
is set to 0.005.

The streamlines and vorticity contours for the configuration of L = 2.5D at Re= 100 are
illustrated in Figure 17. It can be observed that the flow maintains a steady state though the
Reynolds number is greater than the critical value for one isolated cylinder (Re ≈ 49). From the
streamline plots in Figure 17, we can also see that the flow going through the gap is restricted.
Furthermore, the shear layer is separated from the inside surface of the upstream cylinder, and
reattaches onto the outer surface of the downstream cylinder. This flow regime has been classified
by Zdravkovich [15] as the quasi-steady reattachment. The temporal behaviour of lift coefficients
for tandem cylinders of L = 2.5D at Re= 100 are presented in Figure 18. From Figure 18, it
can be observed that the amplitude of lift coefficients gradually decays as time advances, which
reveals how the unsteady behaviour initially stirred by the artificial perturbation is gradually
dissipated by viscosity. The flow field in the form of streamlines and vorticity contours for a
higher Reynolds number (Re= 200) is shown in Figure 19. It can be seen that as the Reynolds
number increases, the flow field behind the upstream cylinder remains steady, i.e. quasi-steady
attachment, but it is not the case for the flow behind the downstream cylinder. The flow behind
the downstream cylinder becomes unsteady at Re= 200, and finally evolves into an oscillatory
pattern with obvious periodicity. The instantaneous streamlines and vorticity contours within one
complete cycle are shown in Figure 19. The corresponding drag and lift coefficients are shown in
Figure 20. It can be seen that the drag coefficients of both upstream and downstream cylinders
keep constant but the lift coefficients vary with time.
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Figure 23. Instantaneous vorticity contours and streamlines for flow past a pair of tandem
cylinders (L = 5.5D) at Re= 100 in a circle.
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Figure 24. Drag and lift coefficients of flow past a pair of tandem cylinders (L = 5.5D) at Re= 200.

When the longitudinal gap between the two cylinders is increased from 2.5D to 5.5D, the flow
pattern in the gap region has a distinct change. In Figures 21 and 23, instantaneous streamlines
and vorticity contours are shown for the flow fields at Re= 100 and 200 in one complete cycle.
As observed from the streamline plots in Figures 21 and 23, the flow patterns are completely
different from those for the cases of L = 2.5. The separated shear layer from the upstream cylinder
no longer reattaches to the front of downstream cylinder. Instead, a Karman street is formed
behind the upstream cylinder. From the vorticity contours, it is clear that vortex shedding from the
downstream cylinder is highly disturbed by the impingement of the upstream vortex street. The
temporal histories of drag and lift coefficients are shown in Figures 22 and 24. It can be seen that
the lift coefficients of the upstream and downstream cylinders have the same frequency, and the
synchronization occurs between the impingement flow and vortex shedding from the downstream
cylinder. This ‘lock-in’ phenomenon is consistent to the findings of Rockwell [16] by experiments.

The St number, mean value and amplitude of drag and lift coefficients of our numerical results
are listed in Table V. The results of flow past one isolated cylinder are also included in this table
for comparison. It can be seen from Table V that when the gap between two cylinders is extended
to 5.5D, the flow parameters of upstream cylinder are very close to those of one isolated cylinder.
But for the downstream cylinder, the solution difference with one isolated cylinder reflects the
great influence of impingement flow on the flow field. Table VI presents the comparison of flow
parameters between our solutions and those of Mittal et al. [7] at Re= 100. Overall, our results
show good agreement with those of Mittal et al. [7].

3.3.3. Effects of Reynolds number. In the present studies, the numerical simulation is mainly
carried out for the flow fields in the low Reynolds number range (i.e. Re= 100 and 200). The flow
fields within high Re range (103–105) has not been performed due to lack of a good turbulence
model. However, present numerical investigation shows some flow characteristics related with the
Reynolds number, for example, Strouhal number. Similar to the flow past one circular cylinder,
the Strouhal number tends to decreases as Reynolds number increases, which means the vortex
shed from the cylinders at a faster speed. From the comparison of numerical solutions related
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Table V. Flow parameters for flow field around one circular cylinder at Re= 100 and 200.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Reynolds number Re= 100 Re= 200 Re= 100 Re= 200 Re= 100 Re= 200

One isolated cylinder 1.356 ± 0.010 1.348 ± 0.050 0.00 ± 0.287 0.00 ± 0.659 0.166 0.196

L = 2.5D Upstream 1.163 1.022 0.00 0.00 ± 0.0018 — 0.160
cylinder

Downstream −0.0895 −0.220 0.00 0.00 ± 0.0233 — 0.160
cylinder

L = 5.5D Upstream 1.329 ± 0.013 1.295 ± 0.049 0.00 ± 0.330 0.00 ± 0.632 0.160 0.190
cylinder

Downstream 0.858 ± 0.125 0.608 ± 0.237 0.00 ± 1.554 0.00 ± 1.820 0.160 0.190
cylinder

Table VI. Comparison of flow parameters for tandem cylinders at Re= 100.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Results Present Mittal et al. [7] Present Mittal et al. [7] Present Mittal et al. [7]
L = 2.5D Upstream 1.163 1.271 0.0 0.0 — —

cylinder
Downstream −0.0895 −0.075 0.0 0.0 — —
cylinder

L = 5.5D Upstream 1.329 ± 0.013 1.433 ± 0.015 0.0 ± 0.330 0.0 ± 0.403 0.160 0.168
cylinder

Downstream 0.858 ± 0.125 0.952 ± 0.164 0.0 ± 1.554 0.0 ± 1.741 0.160 0.168
cylinder

with different Reynolds numbers, we observed that significant Reynolds number effects are mostly
seen for the tandem configuration of two cylinders in terms of qualitative assessment of the flow
regimes. The side-by-side configuration, on the other hand, is generally insensitive to Reynolds
number. While the Reynolds number increases from 100 to 200, the flow regimes behind two
cylinders remain the same for each geometrical configuration in the side-by-side arrangement, but
show a distinct change in the tandem arrangement, especially for the geometrical configuration
of L = 2.5D. The flow field behind the downstream cylinder develops from a steady state into an
unsteady state as the Reynolds number increases.

4. CONCLUSIONS

In the present study, the flow fields around two circular cylinders arranged in tandem and side-
by-side are numerically investigated by a mesh-free (MLSFD) method. The numerical simulations
are carried out in the low Reynolds number range (Re= 100 and 200). The visualization of the
numerical solutions is realized in terms of instantaneous streamlines and vorticity contours. It shows
that the computational solutions reproduce the various flow regimes observed experimentally. Some
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flow parameters such as the St number, mean value and amplitude of drag and lift coefficients,
which quantitatively characterize the flow fields, are provided, and compared well with those of
previous studies.

The successful simulation of the complex flow phenomenon around two circular cylinders
demonstrates the robustness and flexibility of present MLSFD method. However, for the practical
application, the computational efficiency of the scheme is also an important issue for consideration.
Taking this into account, a hybrid scheme, which combines the flexibility of mesh-free method
and the high computational efficiency of the traditional FD schemes, may have a better potential
in some cases [17].

REFERENCES

1. Bearman PW, Wadcock AJ. The interaction between a pair of circular cylinders normal to a stream. Journal of
Fluid Mechanics 1973; 61:499–511.

2. Williamson CHK. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics 1985;
159:1–18.

3. Zdravkovich MM. Review of flow interference between two circular cylinders in various arrangements. Journal
of Fluids Engineering (ASME) 1977; 99:618–633.

4. Stansby PK, Slaouti A. A numerical study of vortex shedding from one and two cylinders. Aeronautical Quarterly
1981; 32:48–71.

5. Slaouti A, Stansby PK. Flow around two circular cylinders by the random-vortex method. Journal of Fluids and
Structures 1992; 6:641–670.

6. Chang KS, Song CJ. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement.
International Journal for Numerical Methods in Fluids 1990; 11:317–329.

7. Mittal S, Kumar V, Raghuvanshi A. Unsteady incompressible flows past two cylinders in tandem and staggered
arrangements. International Journal for Numerical Methods in Fluids 1997; 25:1315–1344.

8. Meneghini JR, Saltara F. Numerical simulation of flow interference between two circular cylinders in tandem
and side-by-side arrangement. Journal of Fluids and Structures 2001; 15:327–350.

9. Ding H, Shu C, Yeo KS. Development of least square-based two-dimensional finite difference schemes and their
application to simulate natural convection in a cavity. Computer and Fluids 2004; 33:137–154.

10. Tezduyar TE, Glowinski R, Liou J. Petrov–Galerkin methods on multiply connected domains for the vorticity-
stream function formulation of the incompressible Navier–Stokes equations. International Journal for Numerical
Methods in Fluids 1988; 8:1269–1290.

11. Ding H, Shu C, Tang DB. Error estimates of local multiquadric-based differential quadrature (LMQDQ) method
through numerical experiments. International Journal for Numerical Methods in Engineering 2005; 63:1513–1529.

12. Belov A, Martinelli L, Jameson A. A new implicit algorithm with multigrid for unsteady incompressible flow
calculation. AIAA 95-0049, January 1995; 9.

13. Braza M, Chassaing P, Ha Minh H. Numerical study and physical analysis of the pressure and velocity fields in
the near wake of a circular cylinder. Journal of Fluid Mechanics 1986; 165:79.

14. Liu C, Zheng X, Sung CH. Preconditioned multigrid methods for unsteady incompressible flows. Journal of
Computational Physics 1998; 139:35.

15. Zdravkovich MM. Flow induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration
1985; 101:511–521.

16. Rockwell D. Vortex-body interactions. Annual Review of Fluid Mechanics 1998; 30:199–229.
17. Ding H, Shu C, Yeo KS, Xu D. Simulation of incompressible viscous flows past a circular cylinder by hybrid

FD scheme and meshless least square-based finite difference method. Computer Methods in Applied Mechanics
and Engineering 2004; 193:727–744.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:305–332
DOI: 10.1002/fld


